Thoughts on the
SWTP Computer System

Don’t be a scrooge; catch the true spirit of this series with the HUMBUG monitor.

Peter A. Stark
PO Box 209
Mt. Kisco, NY 10549

his month, we continue
the ROM monitor discus-

sion we started last month. The
first ROM monitor in SWTP

" systems was MIKBUG. Most
software was designed to work
with it, and so succeeding
monitors have had to copy many
of MIKBUG's routines and ad-
dresses.

The important MIKBUG entry
points, which should be pre-
served in ‘‘compatible’’
monitors are:

BADDR EO047—Input four hex digits into
index register

BYTE EO055—input two hex digits into
A accumuliator

OUTHL E087—Output left BCD digit in
A accumulator

OUTHR E08B—Output right BCD digit in
A accumulator

OUTCH EO075—Points to OUTEEE

INCH E078—Points to INEEE

PDATA1 EO7E—Print a text string
pointed to by index reg.

INHEX EOAA—input a hex digit into A
accumulator

OUT2H EOBF—Output two hex digits
poainted to by index reg.

OUT4HS EOC8—Output four hex digits

pointed to by index reg.,
followed by a space
QUT2HS EOCA—Output two hex digits
pointed to by index reg.,
followed by a space

ouTS EOCC-—Print a space

START E0DO—Start MIKBUG

CONTRL EOE3—Restart MIKBUG

INEEE E1AC—Input a 7-bit character
from keyboard

OUTEEE E1D1—Output a character to

terminal

These sixteen entry points are

the major ones. In addition,
there are about 20 more minor
ones that you can include if you
just copy most of MIKBUG, but
which are probably otherwise
not needed.

The one exception is the
SWTP BILOAD program, which
is used to speed up loading of
binary tapes such as BASIC.
This program uses these addi-
tional MIKBUG entry points:

DMPREG E115—Print out CPU registers
LOAD19 EO040—Part of load routine

SAV E1AS
DE E1F3
DEL E1EF
ouT2 E1E3

This loader does not work
with an MP-S interface, so |
chose not to include these entry
points. However, | did includean
entry point called INCH8 at
E1F6, which is similar to INEEE
except that it enters an 8-bit
ASCII character rather than
stripping off the parity bit to
make it into seven bits, as
INEEE does.

MIKBUG also uses the
128-byte scratchpad RAM start-
ing at location A0QO. There are
some differences, however, be-
tween MIKBUG and SWTBUG in
address assignments in this
area, and | chose to go with
SWTBUG here rather than with
MIKBUG. The important ad-
dresses are as follows:

IRQ A000—~IRQ interrupt vector
BEGA A002—Beginning address for
punching, etc.

A0OO4—Ending address for
punching. etc.

ENDA

NMI A006—NMI interrupt vector
SP A008—User stack pointer
PORADD AO0OA—Address of the control
port in use
PORECH A00C—Temninal echo onloff flag
XHI A00D—High-order haif of index
register
XLOW AQOE -—Low-order half of index
’ register
CKSM . AOOF—Checksum
SWIIMP A012—SWI interrupt vector
PC AD48—Program counter for Go
* command

MIKBUG had XH| and XLOW
one location lower, and some
other monitors (as well as some
user software) go along with this
convention.

| also treated the stack dif-
ferently. MIKBUG and SWTBUG
always initialize the stack when
they are started up at A042 and
down. The G command then
loads the next seven bytes into
CPU registers and jumps to a
user program with the stack
pointer pointing to A049. So,ina
way, we can think of the area
below A042 as being a monitor
stack, while the area just below
A049 is a user stack.

But SWTBUG's J command
doesn’'t change the stack
pointer when going to a user
program; it leaves it pointing to
the monitor area. Likewise,
when a breakpoint is encoun-
tered, it leaves the stack pointer
unchanged when it executes its
own routines. This results in
some weird occurrences when
the monitor and user stacks
wipe each other out. It becomes
even more interesting when you
consider that some user soft-
ware initializes the stack

elsewhere . .. such as at A042.

Because of this, 1 put other
HUMBUG storage locations ina
separate RAM—far away from
the MIKBUG/SWTBUG RAM—
and treated the stacks differ-
ently. The monitor stack is now
always at DO7F. A jump com-
mand always goes to a user pro-
gram with the stack pointer at
AQ7D (with a return address at
AQ7E/F, so jumping to a sub-
routine will result in a return
back to the monitor), and a GO
command always goes to the
user program with the stack
pointer at A049. _

This keeps monitor and user
stacks completely separate so
they never clobber each other. It
does require a separate RAM,
however, at locations DOOO-
DO7F for strictly monitor use. In
return, it keeps HUMBUG
storage strictly compatible with
any stack or storage assign-
ment made by other programs,
80 there is never a problem.

In my system, the storage at
D000 is provided by the 4K board
| mentioned earlier. In two other
systems that are currently run-
ning under HUMBUG, the mem-
ory is provided by the CPU
board's 6810, relocated to
C000-DFFF as also mentioned
last month.

I/0 Control from the Keyboard

HUMBUG’s control terminal
is a serial terminal using an
MP-S card at port 1, which pro-
vides all input to the monitor,

Microcomputing, August 1980 119

and also standard output. Loca-
tion PORECH (AOOA) contains
$8004, which points to this port.
By changing this number, you
can redirect the control port to
an MP-S card at any other port.
(I'm describing the common ver-
.slon of HUMBUG; my own has
its /O at $F804.)

In addition, HUMBUG can
provide an output to a second
MP-S at port 0, to a user-written
output routine in another
EPROM or (in the 3K 2708 ver-
slon) to the Percom video board.

Any time that the monitor is
looking for commands or any
time that INEEE or OUTEEE is
called, HUMBUG checks this
port for a control-S break
character arriving from the
keyboard. When a control-S is
detected, HUMBUG echoes with
& bell (control-G) and halts ali
current 1/0.

When 1/O is halted, HUMBUG
walits for one more character,
which is used for controlling
monitor ports. If it is recelved by
INEEE, then it is not returned
back to whatever program
called INEEE. This provides con-

trol of output ports without
upsetting other programs. This
control character can be one of
the following:

CR—cancels the current pro-
gram and usually does a return
to the monitor. But the return is
handled through a pointer in
RAM, so that other programs
could change the pointer and
force a return to themselves.
0—turns port 0 on and off.
1—does the same for port 1.
D—does the same for a user-
written port routine.

P—tums the pause feature on
and off. When the pause feature
is on, output will stop every 16
Hines to allow it to be read when
using CRT terminals.

Any other character is Iig-
nored. The 0,1 and D characters
toggle their corresponding
ports; if a port is on then it goes
off, if it is off then it goes on.
Since these characters are not
echoed or even returned to call-
ing programs, ports can be
turned on and off in the middle
of input or output.

The video board output nor-
mally runs all the time and is not

120 Microcomputing, August 1980

controtled. (There is a flag in
monitor RAM, however, that dis-
ables it if | want to use it for
graphics or memory-mapped
output.)

When another port is on, then
the video output simply runs at
the speed of the slowest port.
But when all other ports are
turned off, then the video board
runs at breakneck speed, limited
only by CPU speed.

This feature is extremely ver-
satile. Not only does it allow
precise printer control, but it
also permits rapid skipping

- ahead at video speed. (The 2K

2716 version, which does not
support the video board, will
skip ahead even faster when you
turn off all output.) Moreover,
the control-S/ICR combination
allows you to abort jammed pro-
grams without reaching for the
RESET button.

Extended Debugging Facilities

My third requirement for im-
proved debugging power was
met in several ways. First, the
HD command aliows a hex
dump of selected memory

areas. The DE command prints a
“desembled” listing of machine
code, formatted by address and
Iinstruction. Thus, a DE dump of
a program might go like this:

1000 86 41
1002 BD E1D1
1005 4C

1006 B7 1103

An AO command outputs
memory data in ASCIf so | can
scan for strings. An FM com-
mand aliows filling memory with
a specified byte. This is conve-
nient to fill memory with 3F
(SWI) instructions to catch pro-
grams that go wild. The Fl com-
mand allows searching memory
to find one, two or three bytes.
The MO command moves mem-
ory contents from one place to
another, even if the new area
overlaps the old area.

But the most important func-
tion is the breakpoint and
single-step facility. Up to four
breakpoints can be set in pro-
grams, and whenever a program
encounters such a breakpoint
(or any SWI instruction
anywhere), an interrupt returns
control to HUMBUG, which then
prints out the register contents

and stops. HUMBUG keeps
track of breakpoint locatiohs
and the instructions existing in
those locations and prints a
fisting of them whenever the BP
(breakpoint print) command is
given. This reminds you where
you have put the breaks. An irh-
portant feature is that HUMBUG
doesn't forget about them either
when a jump back ta the monitor
Is done, or when RESET Is
pressed.

SS s used for single-stepping
through programs. Each time
-you type SS, HUMBUG prints
out the address and code of the
next instruction, executes it and
then prints out the contents of
all registers after the instruction
Is completed. 1t will single-step
all instructions except WAI, SWI
and RTI, and cannot single-step
into or through ROM. HUMBUG
prints out NO! whenever any of
these are attempted.

FCROM

FCROM occupies addresses
FCOO-FFFF. It contains the
reset and interrupt vectors that
the 6800 CPU needs at locations

FFF8-FFFF. So, without this
ROM, the system cannot func-
tion at all.

FCROM contains all of the
common MIKBUG /O routines.
But since this ROM is at the end
of memory, none of these rou-
tines are at MIKBUG-compatible
addresses. Instead, they are
simply consecutively placed
wherever they fit. To allow future
changes, though, they are vec-
tored through a jump table that
starts at FC00:

FC00 JMP COLDST
FC03 JMP WARMST
FC08 JMP HOTST
FCO09 JMP INEEE
FCOC JMP OUTEEE
etc.

Even when FCROM s
changed in the future, these
pointers will stay in the same
place, and so external jumps in-
to FCROM will stay unchanged.

OUTEEE and INEEE provide
all of the port control features
mentioned before. In addition,
FCROM has a command proces-
sor that accepts monitor com-
mands from the keyboard and
processes them. But it only rec-
ognizes two commands—ME

for memory examine and
change and JU to jump to a user
program. These are the absolute
minimum that the monitor could
have and still work.

Monitor Extendability

My fourth major requirement
was to allow the monitor to be
changed or expanded without
too much work. As it now
stands, | can add EPROMs
without changing the existing
ones. Moreover, | can even
unplug some of the existing
EPROMSs from the system, and
the rest of the monitor will stiil
work! (Since the 2716 version
consists of just one EPROM,
this obviously doesn’t apply to
it.)

The 2708 versiorn of HUMBUG
consists of three 1K EPROMS:
FCROM, EOROM and E4ROM.

FCROM is completely self-
contained and will run all by
itself, even when the other
EPROMSs are unplugged. It con-
tains all port control and video
board control and, with the ME
and JU commands, can load
and execute other programs.

But it is obviously limited; it
relies on the other EPROMS in
the system. It also doesn't have
MIKBUG-compatible entry
points, although it does have all
the required routines.

This is where the extendabili-
ty feature comes in. Notice in
the above tabie that there is an
entry point at FCQO0:

FCO0 JMP COLDST,
This is the main entry point

when you first turn the system
on or when you push RESET.

"This is a “coid-start,” which ini-

tializes ports 0 and 1 and initial-
izes the video board.

Once this Is done, the FCROM
program checks to see whether
there is a ROM starting at ad-
dress EQ000. If there isn’t, then it
proceeds with a “warm-start”
initialization, where the program
turns on port 1, turns off other
ports and sets more registers.
But if it detects that there is a
ROM at £000, it executes a JSR
to that ROM before doing the
warm-start. This gives EOROM a
chance to execute a cold-start
too.

When EOROM is finished with

Microcomputing, August 1980 121

s TNTERRUPT VECTORS

FFES FE A000 IRQV LBX IRQ IRG VECTOR VIA AOOO
FFEN 4F 00 JAP 0, X
FFED FE A012 SVIV LBX SULJNP SUI VECTOR VIA A012
FFFO 4E 00 JuP 00X
FFF2 FE 4006 WNIV LBX NMI NHI VECTOR VIA AGO0S
FFFS 4 00 JUP 0, X
(FFF®) ORG SFFF
FFF8 FF ES FDD IRGV IRQ VECTOR
FFFA FF ED FDB SUIV SOFTUARE INTERRUPT
FFFC FF F2 FBB MMIV NMI VECTOR
FFFE FC 00 FBD COLBV RESTART VECTOR FOR RESET

Listing 1. Interrupt and Reset vectors.

its cold-start, it checks for the
presence of a ROM at either
E400 or EBOO; if it detects one, it
jumps there. Each EPROM gets
its chance at a cold-start initial-
ization. If EAROM is installed at
E400, it gets control; if not, then
control either goes to the next
ROM (if any) or returns to
FCROM. Initialization Is divided
into cold-start and warm-start,
and each of these transfers con-
trol from ROM to ROM.

When all initialization is com-
pleted, FCROM takes over again
and looks for a command. If an
ME or JU command is entered,
then FCROM executes a mem-
ory change or jump itself. Other-
wise, it puts the two command
characters into accumulators A
and B and transfers control to
other ROMs, in turn. If one of
thesg recognizes a valid com-
mand, it executes it; otherwise,
control goes to the next ROM.
Ultimately, control passes back
to FCROM.

Passing control back and
forth between ROMs allows
more ROMs to be added at any
time. Moreover, if one ROM is
unplugged, the remaining ROMs

still get control and can still ex-
ecute their own commands. In
this way, you can expand or
modify HUMBUG without re-
burning all three EPROMs. But
there Is a price to be paid: an ad-
ditional amount of housekeep-
ing in each EPROM, which takes
up about 40 bytes.

EOROM

EOROM, the second 2708, is
at locations EOOQ00-E3FF.
Although the system will - run
with just FCROM, EOROM is
essential for MIKBUG compati-
bility because the EOROM has
sixteen MIKBUG-compatibie
jump vectors that point to the
corresponding locations of
FCROM. For instance, location
E1AC of EOROM contains an in-
struction that says JMP to
$FC09, which is the actual entry
point for INEEE in FCROM. Each
MIKBUG entry point has such a
JMP.

This is a different approach
from SWTBUG and other moni-
tors, which simply put these
routines at the same addresses
as MIKBUG did and then try to
fit everything in. Here all the

‘example.

* JUNP VECTORS

(FCO0) ORG $FCOV
FCOO 7E FC33 COLDV JNP COLBST COLD START ENTRY POINT
FCO3 7E FCS2 WARNV JNP UARNST UARN START ENTRY POINT
FCO& 7E FC4 NOTV JNP HOTST HOT BTART ENTRY POINT
FCOY 7E FPY3 INEEEV JNP INEEE INPUT CHARACTER ROUTINE
FCOC 7E FDFD OUTEEV JWP OUVEEE OUTPUT CHARACTER ROUTINE
FCOF 7€ F379 CRLFV JNP PCRLF PRINT CR/LF
FC12 7E FISS POATAV JNP PPATA PRINT A STRING
FCIS 7€ FDED INCHEV JAP INCHS
FCI8 7€ FPAY INNEXV JNP INMEX
FCID 7€ FB24 BYTEV AP BYTE
FCIE 7€ FDI6 BABDRV JNP BADBR
FC21 7E FBSE QUTZNV JWP OUYT2M
FC24 7E FD36 GUTRLY JNP OUTHL
FC27 7E FD3A OUTHRV JWP OUTHR
FC2A 7E FD4Y OUT28V JNP QUT2HS
FC2D 7E FD47 OQUTASY JNP OQUT4MS
FC30 7E FB43 OUTSY JWP OUTS

Listing 2. FCROM jump table.

122 Microcomputing, August 1980

routines are elsewhere, and only
JMP instructions exist.

Woven in between these
JMPs are the coid- and warm-
start routines, the command
processor that recognizes
monitor commands and rou-
tines for the following com-
mands:

LO—Load MIKBUG-formatted tape
PU—Punch/Save MiKBUG-formatted tape
EN—Punch end-of-tape with program
counter and S9 code '

FD — Bootstrap for Flex disk

PD — Bootstrap for Percom disk (or go to
C000 EPROM)

GO—Go to user program using AO48/A049
address

CL—Clear terminal screen

Fi—Find one, two or three bytes In memory
HD—Formatted hex dump of memory
FM—Fill memory with a byte
CS—Compute a 16-bit checksum of
memory contents

MT—Perform a memory test

PC—Print contents of AC48/A049 (program
counter).

Thus, this ROM puts in all of
the necessary routines to make
HUMBUG compatible with user
programs and also puts in all
the common SWTBUG com-
mands, except breakpoints and
register examine.

EOROM has one more rou-
tine—FROMTO. This routine
essentially asks for an input
from the keyboard of a FROM
address and -a TO address,
which are placed into BEGA
location A002 and ENDA loca-
tion A0O4 in the monitor scratch-
pad. This routine is called by
most other commands to spec-
ify the beginning and end of
desired memory.

The PU command is a good
In SWTBUG or
MIKBUG, locations AQO2 and
A004 had to be preset to the
starting and ending locations
before calling the P command.
In HUMBUG, the PU command
uses the FROMTO routine to

ask for the beginning and end-:

ing locations. This routine is
set up so that entry of a carriage

return wil make it use the

previous values.

E4ROM

E4ROM s the third 2708 and
occupies addresses E400
through E7FF. Its cold-start and
warm-start initialization and
passing control to the next ROM
are similar to those of EOROM,
but EAROM adds the following
commands:

DE-—Desembie memory and print machine-
language codes

BP-—Breakpoint printout
BR--Breakpoint set or reset
CO—Continue atter a breakpoint
RE—Register examine

S§S—Single-step

Al—ASCH Input Into memory

AO—ASCH output from memory
MO—Move memory contents

The exact functions of these will
become clear when we examine
the actual programs.

Since the system is set up to
allow more ROMs to be easily
added, there are obviously
others available. EBROM, for in-
stance, adds commands to
compare memory contents,
change terminal baud rate from
the keyboard and change con-
trol ports. But these are just
frosting on the cake, not really
needed for most systems.

Let's examine some of the ac-
tual HUMBUG code.

Initialization and Reset

A 6800 requires four address
vectors to be located in the top
eight memory locations, FFF8
through FFFF, which are used
to vector resets and interrupts.
These four vectors are:

FFF8 and FFF9—1RQ vector
FFFA and FFFB—SWI vector
FFFC and FFFD—NMI vector
FFFE and FFFF—Reset vector

When you press the reset but-
ton or when an interrupt occurs,
the 6800 pulls the appropriate
address out of one of these four
locations and puts it in the pro-
gram counter. This causes a
jump to that address. For that
reason, when the system is first
turned on, at least the reset vec-
tor and the routine it points to
must already be in memory. This
is why every 6800 system has its
ROM located at the very top of
memory.

Listing 1 shows the portion of
HUMBUG's FCROM that con-
tains the very top of memory.
FFF8 through FFFF contain
these four vectors: IRQ points to
FFES, SWI points to FFED, NMI
points to FFF2 and reset points
to FC00. Thus, when a reset is
completed, the 6800 starts ex-
ecuting from location FCO0O,
which is the beginning of
FCROM. '

The interrupt vectors all point
to locations in ROM, shown just
above that. When an Interrupt
occurs, the computer goes to
the appropriate routine, loads a
number from RAM into the index
register and then does an in-

FCI3 OE DO?F COLDST LDS

FC34 CE 8000 LBX 848000
FC3? 8 O3 LA AWl
FCID A7 00 8TA 4 0,X
FC3D A7 04 STA A 4,X
FCIF 86 O LA & 011
FC41 A7 00 STA A 0,X
FCA3 A7 04 STA A 4,X
FCAS“BD FFAS JSR VINIT
FCAS D6 E0OO LDA A SE000
FCAB 81 7€ CAP A RO7E
FCe» 26 02 BE UARNST
FCAF B E000 JSR $E000

o COLDSTART INITIALIZATION
¥SDO7F

SET STACK TO MONITOR AREA

o INITIALIZE 1/0 PORTS

PORY O AND 1 ACIA

INITIALIZE VIDEO

* SEE IF OTHER RONS REGUIRE COLB START INITIALIZATION

CHNECK RON-EO
18 THERE A JUNPY
0

YES, 60 TO IT

Listing 3. FCROM cold-start initialization.

dexed jump to the address given
in the index register. This ad-
dress is actually specified
through RAM and can therefore
be changed by user programs,
even though the JMP instruc-
tions themselves are in ROM.
The three addresses used are
exactly compatible with
SWTBUG:

IRQ is AOOO
SWi is AD12
NMi is AO08

FCROM Jump Table

FCROM contains routines
that are subject to future
change. To avoid having to
change other software, all these
are handied through a jump
table {(sometimes also called a
“transfer vector”) as shown in
Listing 2. In particular, note that
FCO0 is the start location to
which the computer jumps on a
reset. This is called COLDV
(cold-start vector), and it jumps
to COLDST at FC33. Two other
entry points are WARMV and
HOTV, followed by vectors or

pointers to all the MIKBUG-com-
patible routines.

Cold Start

Listing 3 shows what hap-
pens at a reset (or coid-start; a
jump to EODO, which is the
MIKBUG/SWTBUG reset ad-
dress, also winds up at this loca-
tion).

First, the stack pointer is set
to point to the monitor stack at
DO7F. Then, MP-S ACIAs on
ports 0 and 1 are reset and then
initialized, followed by a jump to
the video board initialization
routine. in the case of HUMBUG,
this is exactly the same as Per-
com’s suggested video driver
initialization, and so there is no
need to show it here. If you have
this video board, you already
have a listing of it; if you don't,
then you don’t need it and can
replace it with initialization for
another video board or skip it.

The last four lines of cold-
start check to see whether there
is another ROM at address

E000. Since all HUMBUG ROMs
start with a jump table, we
check to see whether there is a
7E or JMP instruction at address
E000. If not, we continue to
WARMST. If there is a JMP, we
execute a JSR to E00Q.

Cold-Start of Other ROMs

As it turns out, EOROM
doesn’t need any cold-start ini-
tialization. Unfortunately, the
overhead involved with the ex-
pandability of HUMBUG re-
quires that we go through some
testing to check for a following
ROM (see Listing 4). Here we see
the JMP at location EQOQ, which
leads to CINIT. Since EOROM
has many MIKBUG-compatible
jumps, a lot of its routines have
to be squeezed between these
jumps. In this case, the CINIT
cold-start initialization is placed
right after the INEEE vector .at
E1AC, which is aiso shown in
Listing 4.

The NOP at CINIT shows
where the initialization would
go, if there was some. The
following steps check for a JMP
at the start of the next ROM at
address E400 and jump to it if
present. If not, then they check
for a JMP at the start of a ROM
at EB00 and again jump to it if

present. Hf neither is present,
then there occurs an RTS, which
returns back to FCROM's warm-
start procedure.

These steps check for a JMP
both at address E400 and at
E800, so that if an additional
ROM is installed at EBOO, but the
one at E400 is pulled out, then
the system will simply skip past
the removed ROM. The purpose
is to allow the monitor to func-
tion at least partially, even if
some of its ROMs are pulled out.
The only crucial ROMs are
FCROM and EOROM, although
the system will work even with
just FCROM.

Although EOROM doesn’t
need cold-start initialization,
E4ROM does. Its cold-start ini-
tialization is shown in Listing 5.
Notice that E4ROM tries to dif-
ferentiate between a reset or
jump to the cold-start location
EODO, as opposed to a real cold-

" start right after the first power-

on. The reason is because
breakpoints have to be handied
differently.

When you first turn on the
power, the list of breakpoints
maintained by HUMBUG has to
be erased so that, if any new
breakpoints are established,
HUMBUG doesn’t accidentally

EOO0 7E E1AF CINITV JNP CINIT

E1AC 7€ FCO? INEEEV JWP INEEE

EWWF 0 CINIT NP

E1D0 Dé EAOO LDA A SE400
€183 01 7€ CHP A B97E
E1D5 27 o8 BEQ CNORE4
E1D7 D6 EROO LBA A SE0OO
E1BA 81 2E CHP A 807
E13C 27 04 BE@ CNORES
E1DE 30 RTS8

EIDF 7E E400 CHORE4 JNP SE400
EIC2 7E ES00 CHORES JNP $E000

* E0 RON ENTRY VECTORS

COLB START INITIALIZATION

VECTOR 10 FC ROX

¢ CINIT - COLD START INITIALIZATION

NONE REQUIRED FOR THIS ROM

& SEE IF OTHER RONS REQUIRE INITIALIZATION

CHECK NEXT ROM
I8 THERE A JUNP?

CHECK THE RON AFTER THAT
IS THERE A JUNP?

%0, RETURN TO FCROX
YES, 60 INITIALIZE
YES, 80 INITIALIZE SECOND ROM

Listing 4. EOROM cold-start initialization.

EA00 7E-EA0Y CINITY JWP CINIT

E432 D6 EBOO RESET LPA A $E800

EA3Y 81 7E CHP A SS7E
E437 27 08 BEQ CHORE4
E439 Dé ECOO LDA & SECOO
£43C 01 7E CHP A B97E
EA3E 27 04 DEQ@ CHORES
€440 3¢ RTS

E441 7E EBOO CHOREA JHP $EBOO
€444 7€ ECO0 CHORE® JNP $ECOO

* EA ROM ENTRY VECTORS

¢ CINIT - COLD START INITIALIZATION
o CHECK UHETHER THIS 1S POUERUP OR RESET OF SYSTEM

€409 CE 1234 CINIT LDX 981234
E40C BC D028 cPx pouLP
E4OF 26 03 BNE PUP
E411 BC D024 CPX POWUP+2
E414 27 1C BEQ RESEY
* INITIAL POMER UP SEQUENCE
E416 CE ESDF PUP LBX SBKRETH
EA19 FF a012 STA SwIJNP
EAIC CE 1234 LBX 881234
EAIF FF D028 81X POWLP
E422 FF DO2A STX ° POWUP+2
E425 CE D034 - LIX BBKTAB
€428 84 FF © LBA A BSFF
€426 C6 OC LDA B 912
E42C A7 00 DKERAS &TA A 0,X
EA2E 08 X
EA2F 3A DEC B
EAJ0 246 FA BNE BKERAS

¢ SEE IF OTHER RONS REQUIRE INITIALIZATION

Listing 5. E4ROM cold-start initialization.

COLD START INITIALIZATION

CHECK POUER-UP LOCATIONS

INITIALIZE BREAKPOINT IS8 ADDRESS

INITIALIZE POUUP FLAGS

ERASE BREAKPOINT TAME
REPEAT IF NOT FINISHED
CHECK MEXT ROM

I8 THERE A JUNPY

CHECK THE ROM AFTER THAT
18 THERE A JUNPY

N0, RETURN TO FCROM
YES, 80 INITIALIZE
YES, 60 INITIALIZE SECOND ROM

124 Microcomputing, August 1980

clobber a program by restoring
what it thinks is a prior break-
point.

On the other hand, when you
press the reset button or make a
jump to the cold-start location

EODO (or FC00), you don't want -

to erase the breakpoint table
because doing so would make
you lose track of locations that
have been replaced by a break.
So we need a way of telling the
difference between the two
kinds of resets. ‘

For this reason, four loca-
tions- in monitor RAM, called
POWUP, and located at D028
through D02B, are used as a
flag. When you first turn on the
power, these locations will con-
tain some random numbers.
CINIT in E4ROM (Listing 5)
checks the contents of these lo-
cations. If the contents are 12,
34, 12 and 34, respectively, then
the program assumes that this
is not a real cold-start, and so a
jump is made to RESET. But at
the first cold-start, these loca-
tions will be random and will
therefore not contain this partic-
ular combination. (The chance

of their just accidentaily holding
this number at power-up is
about 1 in 4 billion?)

In that case, the. routine at
PUP will be performed. This ini-
tializes the address for an SWI
to the return address BKRETN
used for breaks, places the
12-34-12-34 combination in
POWUP and erases the break-
point table BKTAB. Then it goes
to RESET. (Once POWUP is set
to 12-34-12-34, all subsequent
resets will skip this segment.)

The final part of the cold-start
procedure again checks wheth-
er there are other ROMs, this
time at E800 and ECO00, and
jumps to them if present. Other-
wise, an RTS brings us back to
FCROM, which will continue
with the warm-start initializa-
tion. Remember that FCROM
went to EOROM with a JSR.
Each ROM then continued to the
next ROM with a plain JMP, so
that an RTS will bring us all the
way back to the first JSR in
FCROM.

Next month we’'ll conclude
the listing of this “Monitor to
End All Monitors.” B

Microcomputing, August 1980 125

