Thoughts on the

SWTP Computer System

The author continues his discussion of the “‘monitor to end all monitors.”

Peter A. Stark
PO Box 209
Mt. Kisco, NY 10549

I n this article we will continue
our discussion of ROM
monitor design and source list-
Iings of important routines from
my “monitor to end all moni-

tors” called HUMBUG. In part 13
(June 1980) we went over the
principal design features, the
organization of the monitor and
its cold-start procedure. Let's
examine the warm-start pro-
cess.

Warm-Start

MIKBUG has two entry
points—EODO and EQE3. The

FC32 BE DO7F UARNST LBS #$DO7F
FC35 4F CLR A
FC36 97 D003 STA A BSTAT

FC59 37 3000
FCSC 37 D004

STA A POSTAT
STA A PASTAT

Fe3k 4h BEC A
FC40™37 DOOI STA A PISTAY
FC43 B7 3002 STA A VETAT
FCé6 CE FCO3 LDX BNARMV
Fcae FE Bod9 STX RETADD
FCoC 86 OF 7 LBA A 080F
FCsE 87 DoOY STA A PAUCTR
EC71 CE 8004 LIX 098004
FC24 FF AO0A - $TX PORADD
FC77 06 1S LDA & #1S
FC?79 97 BOOC STA A KRDINZ
FC7C 86 1 LDA & 3811
FCZE 37 DOOB STA A PTRINZ
FC81 86 13 LDA A #8123
FC83 8D FE47 JSR QUTCHM
FC84 4C NG &

FC87 BD FE&7 JER OUTCHN

FCBA Bé E003 LOA A $£003
FC8D 81 7E CHP A 987€
FC8F 26 03 DNE HOTST
FC9t BB E003 JSR SEQRY

* UARNSTART INITIALIZAYION

SET STACK POINTER T0 NONITOR AREA
TURN OFF D

TURN OFF PORT 0 OUTPUT

TURK OFF PAUSE FUNCTION

TURN O CONTROL PORT DUTPUT
TURN ON VIDEO BOARD OUTPUT

INITIALJZE -PAUSE-RETURN ADDRESS
INIT PANSE LINE COUNTER

SET CONTROL PORT ABBRESS
ACIA INPUT INITIALIZATION

ACIA OUTPUT INITIALIZATION
TURN READER OFF

TURN PUNCH OFF

¢ SEE IF OTHER RONS REQUIRE UARN START INITIALIZATION

CHECK RON-ED

IS THERE A JUNP?
L 1]

YES, 60 TO IT

Listing 1. FCROM warm-start initialization.

178

Microcomputing, September 1980

entry point at EODQ initializes
everything, whereas entering at
EOE3 produces only a restart of
the monitor, without full initial-
ization. HUMBUG calls these
two entry points cold-start and
warm-start. They are actually at
FCO00 and FCO3 in FCROM, but
jumps at EODO and EOE3 in
EOROM go here too.

FCROM warm-start is shown
in Listing 1. As in every entry,
the stack pointer is initialized
to the monitor stack area at
DO7F to make sure that the
monitor stack never destroys
part of the user's stack.

The next part of Listing 1 ini-
tializes the flags in RAM. First,
a zero is stored in DSTAT,
POSTAT and PASTAT. DSTAT
indicates whether output on
the optional port D is desired; a
0 means no. Clearing POSTAT
means that output on port 0 is
also turned off, while clearing
PASTAT disables the pause
mode, which pauses output
every 15 lines.

Accumulator A is then decre-
mented to FF. This is stored in
P1STAT to turn on port 1 output
and in VSTAT to turn on video
board output. For all of these

flags, 00 means ‘off and FF
means on.

Next, the address of the
warm-start entry point at FC03
is placed into location RETADD.
This address is then used
whenever a program is stopped
with a control-S and aborted
with a return. This will normally
lead the program back to HUM-
BUG's warm-start, but any pro-
gram can modify this location to
cause a return to itself. For in-
stance, if BASIC is patched to
put 0103 into RETADD, then an
abort will go back to BASIC in-
stead. Once control returns
back to HUMBUG, this will again
be reinitialized to FCO03.

The pause counter PAUCTR is
then initialized to 15, so that if
the pause option is enabled, out-
put will pause every 15 lines.
Again, any program could
change this to some other value
while it is executing.

The next part of warm-start
loads 8004, the address of con-
trol port 1, .into location
PORADD. This Is compatible
with SWTBUG and enables the
control port to be moved around
by software just by changing the
number in location AOOA/AOOB.

s HOTST - INITIALIZATION COMPLETE. READY FOR CONMAND

FCP4 8E BOZF HOTST LDS WSDOJF
FC97 7F A0OC CLR PORECH
FC96 3B FB7Y ISR PCRLF PRINT CR/LF
FCYD 06 24 LDA A ¥» PRINT PROMNPT
FCOF BD FOFD JSR OUTEEE
FCA2 B9 FR93 JSR INEEE
FCAS 34 PSK A
FCAG DD FBO3 JSR INEEE
FCA® 14 TAB NOVE SECOND TO B
FCAA DD FDéS JSRouTs
FCAD 32 PUL &
FCAE 34 PSH A
+ CHECK CONNAND

FCAF 81 4A CHP A #°J CHECK FOR JU(NP)
FCBY 26 07 BME NOTJU
FCDY Ct 35 CHP B 82U
FCBS 26 03 BNE NOTJU
FCB? 7E FD4F NP JUNP
FCBA @1 4B NOTJU CHP A BN
FCBE 26 04 BNE HOTEND
FCBE C1 45 chP B #°E
FCCO 27 OF BEQ CHANGE

. ’ s SEE IF OTHER RONS HAVE COMNANDS
FCC2 36 E006 MHOTEND LDA A $£006
FCCS 81 7E CAP & #$7€ IS THERE A JUNP
FCe? 27 o2 BEQ GOJUNP
FECY 20 €9 BRA HOTST
FLCD 32 GOJUKP PUL A
FCCC DD E00 ISR $E004
FCCF 20 €3 GOWOTY BRA HOTST

Listing 2. FCROM hot-start initialization.

RESET STACK POINTER TO MONITOR AREA
TURN ON CONTROL PORT ECHO

GET FIRST COMMAND CHARACTER
SAVE FIRST CHARACTER OF COMMAND
GET SECOND COMMAND CHARACTER

RESTORE FIRST CONNAND
AND SAVE IT ONCE MORE

EXECUTE JUMP CORNAND
CHECK FOR NE{MORY CHANGE)

EXECUTE CHANGE COMNHAND

AND LOOK FOR NORE
GET FIRST CHARACTER
AND JUNP TO MEXT ROM
THEN DO MORE CONMANDS

The next four lines over-
come the following problem in
SWTBUG: each time SWTBUG
inputs via INEEE, it initializes
the ACIA to use only one stop
bit; when doing an output via
OQUTEEE, it initializes the ACIA
to output two stop bits. Unfortu-
nately, if the user has previously
initialized the ACIA in some
other way, then this will
reinitialize the port and destroy
what has been done. This has
been a particular problem in
controlling the reader control
line in the interface. HUMBUG

does the same thing but puts’

the two initialization constants
into locations KBDINZ and
PTRINZ during warm-start and
reads - them out of these two
locations in INEEE and
OUTEEE, respectively.

Changing these locations be-
fore use allows complete user
control over the ACIA. For in-
stance, by changing the two
constants from 15 and 11 to 16
and 12, the ACIA will change its
baud rate to a quarter of its pre-
vious value. Since | have both a
1200 baud terminal and a 300
baud keyboard on the same
port, | can change the baud rate
from 1200 to 300 and back from
the keyboard.

The last four steps of warm-
start output $13 and $14 to the
port to turn off the reader and
punch, if they are controlled by
ASCIl codes.

Once all FCROM initialization

is completed, the program tests
to see whether there is a ROM at
E000, and a JSR is made to it if it
is there. As it turns out, neither
EOROM nor E4ROM require any,
so they return to FCROM with an
RTS. Their handling of warm-
start is identical with that of
cold-start, so I'm not including
those listings here.

Hot-Start

Hot-start is my name for the
command loop that looks for
monitor commands and goes to
execute them. The FCROM hot-
start routine is shown in Listing
2.

As usual, the stack pointer is
first reset to the monitor stack
area at DO7F. Then location
PORECH is zeroed (it is used by
INEEE to determine whether to
echo keyboard input). In this one
case, 00 means that echo is on

and FF means that it is off. This.

is the opposite of the other
flags, but is necessary to be
compatible with SWTBUG. The
program then jumps to a car-
riage-return/line-feed subrou-
tine and outputs the prompt
character (*). It then inputs the
two-letter command, puts the
two letters into the two ac-
cumulators and checks them.
Since FCROM has only two
commands, it is much faster to
check the letters directly than to
look them up in a command
table. 1f the command is JU,
then we jump to routine JUMP; if

E006 7E E20F COMNBY JNP CONAND CONMAND ENTRY POINT
E20F 34 CONAND PEH A SAVE FIRST CHARACTER
€210 CE E240 LBX BCONTAD-4 SET ADBR OF COMNAND TAME
£213 08 LOOKUP 1NX
£214 08 inx
E2tS 08 nx
€214 08 Inx
E217 oC E279 CPX STABEND END OF TABLEY
E214 27 10 DEQ COMEND VES
€21C a1 00 CHP & O,X N0, CHECK FIRST CHARACTER
E21E 24 F3 BME LOOKUP UkONE
€220 €1 ot CHP B 1,X CHECK SECOND CHARACTER
€222 24 €F BNE LOOKUP URONG, SKIP TO NEXT
€224 EE 02 LIX 2, GET ADDRESS IF OK
£226 32 PUL A RESTORE STACK
£227 30 FCI0 JSR 0uTS PRINT A SPACE
€224 4E 00 Jae 0,X JURP TO APPROPRIATE CONMAND ROUTINE
o CONRAND NOT FOUND; BEE IF OTHER RONS NAVE CONNANDS
E22C D4 E406 CONEND LDA A $E4OS CHECK WEXT ROM
E22F %1 7E CHP A B$7E I8 THERE A Junp
£231 27 09 BEG CONNDA
€233 Bé ENO4 LDA A SES04 CHECK ROM AFTER THAT
£234 6t 7€ _CHP A #87E IS THERE A JUNP
£230 27 04 BEQ CONNDO
E23A 32 PUL A NO NORE ROMS; FIX UP STACK
£233 v RIS AND RETURN. TO FCROM
£23C 32 CORNDA PUL & NEXT ROW EXISTS; RESTORE FIRST TMARACTER
E23D 7€ EAOS JUP SEN04 60 10 1T
€240 32 CONNDS PUL A SECOND ROM EXISTS; RESTORE FIRST [HARACTER
E241 7€ €804 : Jup SEBO 60 10 IT
s COMNAND TADLE
€244 4L COMTAD FCC “L0- LOAD MIKBUG TAPE
£244 £E0 OC FO) LOAD
€248 30 FCC “PU” PUNCH MIKDUE TAPE
E4AE1 10 FOB PUNCH
€24C 44 FCC “FB° FLEX DISK BOOT
E24E €2 ME F3R FLMOOT
€250 45 FCC “EN” END OF TAPE FORMATTING
€252 £V F9 FO3 PNCHS?
€254 &7 FCC 7807 G0 TO USER PROGRAN VIA A048/9
E254 E1 A8 FOy 60TO ’
E238 43 FCC “CL” CLEAR SCREEN
£254 E0 58 F0B CLEAR
E25C 44 FCC “FI7 FIND BYTER COMNAND
E23E EJ 03 FOB FINB
€260 48 FCC “HD” NEX DUNP ROUTINE
E262 €O D3 F3B HEXDWP
E264 46 FCC “FN’ FILL MENORY
€266 €3 Y FOB FILL
E248 50 FCC “PD’ PERCOM DISK BOS-PLUS
E26A CO 00 FDB NMBOSPL
€24C 43 FCC “C8” TUO-BYTE CHECKSUM
E24E €3 .74 F3s SuM
€220 4 FCC “MT/ MENORY TEST
£272 E3 DA FB) ROBIT
£274 50 FCC “PC” PRINT AGAB/M047
£274 €0 9F FBB PRNT48
(€270 TABEND EQU +
Listing 3. EOROM command lookup.

the-command.is ME, then we
jump to routine CHANGE.

However, if the command is
not recognized, then FCROM
checks to see whether there is
another ROM at E000. If so, it
executes a JSR to’'the hot-start
entry point of that ROM, carry-
ing the two-letter command in
accumuiators A and B. If the
command Is not recognized by
the other ROMs, they execute
an RTS to return to the last tine
in Listing 2, which will return
back to the beginning of the hot-
start command loop. in this way,
the command routine of all
other ROMs (except FCROM)
can be called as a subroutine by
user programs.

Each of the other ROMs has
more than two possible com-
mands, so to more efficiently
recognize the two-letter com-
mand, we should look it up in &

Microcomputing, September 1980

table. Listing ‘3 shows how
EOROM does this; all other
ROMs are done the same way.
In each case, there is a com-
mand table, COMTAB, which
lists each two-letter command,
foliowed by the address of the
routine that executes that com-
mand. The program simply
looks through that table—one
entry at a time—and tries to
match up the two letters inthe A
and B accumulators against the
command entry in the table. f a
match is found, then the pro-
gram executes an indexed jump
to the address listed in the table.
If no match is found, the rou-
tine checks whether there are
any other ROMs. For instance,
EOROM checks for ROMs at
E400 and E800, etc. If any are
found, the program jumps to
their command entry point; if
not, then an RTS returns the pro-

179

. FDOF 8D AS JUNP BSR BADBR
FB71 BE AO2F LDS #IAOF
FB74 AD 00 JSR0,X
FD74 7t FCS2 JHP UARNST

¢ JUMP TO USER PKOGRAM COMMAND

GET ADDRESS

INITIALIZE STACK 10 USER AREA
JUNP TO USER PROGRAN

ON RTS, RETURN TO WARAM START

Listing 4. JU command.

gram to FCROM without doing
anything. ’

Back to FCROM

FCROM has all of the
MIKBUG-compatible routines
such as INHEX, BADDR and
OUT2HS, as well as routines to
change memory and jump to a
user program. All of these are
identical to MIKBUG (except
that references to a PIA on port
1 have been changed to an
ACIA). Only three routines—the
jump-to-user-program routine,
INEEE and OUTEEE—are sub-
stantially different.

Jump to User Program

As shown in Listing 4, the
routine JUMP consists of just
four steps. First, routine BADDR
is called to get the jump ad-

dress. Then the stack pointer is
set to AO7F, the user stack area,
and JSR is executed to the ad-
dress that has been input by
BADDR and held in the index
register.

This instruction is JSR rather
than JMP so that subroutines
can be executed and tested. A
return to warm-start follows JSR
so that when a subroutine re-
turns to the monitor, it will neat-
ly reenter the monitor.

Notice how a compietely: dif-
ferent user stack area—sepa-
rate from the monitor stack at
DO7F—is set up. No locations in
the scratchpad RAM at A000-
AO7F are used other than what
SWTBUG used. The user pro-
gram can thus redefine the
stack area to a location com-
patible with SWTBUG or MIK-

180 Microcomputing, September 1980

BUG. On the other hand, it the

 user program does not redefine

the stack, then a large area of
the scratchpad is available for
stack use.

INEEE

The new INEEE is shown in
Listing 5. The last dozen fines of
INEEE are the heart of the rou-
tine. INCH8 checks the ACIA on
the control port for a character,
waits for it if none is there and
then returns to the calling
routine with the character in
the A accumulator. Note how
PORADD is used to define the
port address, while KBDINZ is
used to configure it just before

-the input.

"INCH8 returns a full 8-bit
character, including the parity
bit, ‘which is required for some
routines. However, most of the

time. we want to strip off the
parity bit and make the first bit
of each character a 0. This is
done by INCH7, which ANDs the
character from INCH8 with a
mask of $7F (a binary 01111111)
to remove the first bit.

INEEE starts with saving the
B accumuiator and index regis-
ter and then gets the character
from INCH7. if it is not a
control-S (or an ASCH $13), then
it tests PORECH to see whether
echoing is desired and prints it
back via OUTEEE if PORECH is
equal to 00.

If a control-S was detected,
INEEE jumps to GOTCS and
then to GETGMD to get the next
character and perform the indi-
cated command.

GETCMD starts by ringing the
bell to signal that it is in control
and then gets the next character

o INEEE - CNARACTER INPUT ROUTINE
FD93 37 INEEE PSH D AVE 3
FDY4 FF 2005 STX INEEXR SAVE REGISTERS
FB97 8D 4F INRPT DSR INCN? GET INPUT CHARACTER
99?81 13 CHP 4 913 18 IV CONTROL-S?
FaY3 27 oC PEG $OTCS YES
" F39D 75 AooC TS] PORECK WO; ECNO ON?
FIAD 26 02 BNE INEXIT WO, 8O EXIY
FDA2 80 39 PSR OUTEEE YES, S0 ECHO
FDA4 FE DOOS INEKIT LDX INEEXR RESTORE REGISTERS
FOA7 33 P B :
FBAR 39 RIS AND RETURN
¢ CONTROL-S DETECTED. GET AND INTERPRET CONNAND
FDAY 6D 02 GOTCS DSR GETCND BO CONAAND
FIAB 20 EA A INRPT
. * SUBROUTINE TO GET AND 30 CONNAND
FDAD 86 07 GETCHD LDA A 0907
FOAF D FE? JSR OUTCMM ECHO CONTROL-8 (DELL) ON CTL PORT
F952 92 34 BSR INCH7 GET SECOND CHARACTER OF CMD
F394 81 30 CHP A 870 PORT § CONHAND?
FOD4 24 04 BNE NOTO L] -
FIB8 73 D000 CON POSTAT YES; FLIP PORT O STATUS
£33 39 RTS MND RETURN
FORC 8 31 NOTO CHP A 81 PORY 1 CONMANDY
FIDE 26 04 BE NOTY "0
FBCO 73 DOOL CON PISTAT YES; FLIP PORT 1 STATUS
FDC3 3% TS
FICA 81 44 NOTY CHP A BB PORT D CONNAND?
FOCé 26 04 BE NOTD N0
F3CO 73 D003 CON DSTAT YES; FLIP PORT B STATUS
FaCD 39 RY
FOCC 81 S0 HOTD CHP A WP PAUSE CONNANDY
FDCE 26 09 BE NOTP "0
FBDO 73 D004 COH PASTAT YES; FLIP PAUSE STATUS
FID3 84 OF LDA A B8F
FID5 97 DOOD STA A PAUCTR RESET PAUSE LINE CNTR
8 3y L AND RETURN
FIDY 01 0P NOTP CNP A ¥MAD CR CONNAND TO QUITY
FODD 26 OA . BNE NOTCR WO
N 33] YES; FIX UP STACK
FDDE 33 LD
FIOF 33 GUIT PUL B RESTORE B
FDEO 32 PUL &
FOEY 32 PR A FIX STACK SONE WORE-
FOE2 FE DOOY LOX REVADD GET RETURN ADDRESS
FDES 4E 00 JEP O 0,X AR RETURR
F3E7 39 nOTCR RTS8 RETURN VITNOUT BAINS ANYTHING OTHERVISE
* ACTUAL CONTROL PORT INPUT ROUTINES
FBED 83 03 INCH? DSR INCHE GET 7-DIV CHARACTER
FDEA 84 7F ANB A DO7F WASK OUT PARITY
FDEC 3¢ 30
FDED FE AOOA INCHB LDX PORADD GET 8-DIT CHARACTER
FDFO Bé B0OC LBA A KDDINZ CONFIGURE ACIA
FDF3 47 00 STA 4 0X
FDFS A6 00 ACIAIN LBA 4 0,X
FOF7 47 ASR &
FIFS 24 FD BCC ACIAIN VAIT FOR CHARACTER
FOFA A6 01 LBA A VX GET IT
FOFC 39 RTS AND RETURN
Listing 5. INEEE routine.

via INCH?7. If this character is
either 0, 1, D or P, then it toggles
POSTAT, P1STAT, DSTAT or
PASTAT, respectively. Com-
plementing is used, so that
these flags will go from 00 to FF
and back to 00 each time they
are flipped. These four flags
control output on port 0, port 1,
optional port D and the pause
mode. On a valid command,
GETCMD ends with RTS, which
goes back to GOTCS, which, in
turn, leads back to INRPT to
read the next character. Thus,
the character following the
control-S Is neither echoed nor
returned to the calling program.

On the other hand, if the char-
acter following the control-S
was a carriage return, then the
GETCMD fetches the return ad-
dress from RETADD and jumps

.to it, thereby aborting whatever

program had called it.

OUTEEE

Listing 6 shows the revised
OUTEEE. This routine begins by
saving some of the registers and
then checks the control port for
the presence of any character at
the keyboard. If it detects a
control-S, then it goes to GET-
CMD to execute it (as | de-
scribed previously). Any other
condition leads to NOTEST.

The next few steps check
PASTAT to see whether the
pause mode is on. |f it is, then a
series of decisions has to be
made. If the current character is
a clear-screen character (hex 10
or control-P in SWTP programs
and terminals), then the pause
line counter must be reset to

L1 R OUTEEE PSK)
FOFE FF 9007 STX DUTEXR
FEOY 34 PSH A
FEO2 FE A00A LBX PORADD
FEOS A6 00 LBA & 0,X
FE07 47 - ASR A
FEOS 24 OA BLC NOTEST
FEOA Aé 01 LBA A 1,X
FEOC 84 7F AND A NOPF
FEOE §1 13 CHP A 4913
FE1O 24 02 BNE NOTEST
FE12 0D 99 PSR BETCHD
FE14 32 NOTEST PUL A

+ CHECK FOR PAUSE
FE1S 70 D004 IST PASTAT
FE18 27 24 BER NOPAUS
FE1A 81 10 CAP & 8810
FEIC 24 07 BME NOCLR
FEVE 84 OF LDA A 830F
FE20 37 DOOP $TA A PAUCTR
FE23 20 1Y BRA NOPAUS
FE25 81 0D NOCLR CAP A §90D
FE2? 26 15 - BNE NOPAUS
FE29 7A 300D BEC ' PAUCTR
FE2C 24 10 BME NOPAUS
FE2E B4 OF LDA A 030F
FEI0 B7 500D STA A PAUCTR
FE33 0 B3 Sk INCH?
FEIS M 0B CHP A 880D
FEI? 26 03 ME PCONT
FE39 7€ FOOF P ouIv
FE3C 04 0D PCONT LBA A 880D
FEIE 7D DOOD NOPAUS TST POSTAT
FE41 27 02 DEQ NOTPTO
FEA3 0D 1D »8R OUTCHO
FEAS 7D 3001 NOTPTO TST PISTAT
FEAD 27 02 BEQ NOTPTH
FE4A 8D 1) PER OUTCHA
FEAC 7D D002 NOTPTN TST VSIAT
FEAF 27 04 BEQ NOTVID
FES1 36 PEH A
FES2 99 24 PSR BUTCHY
FESA 32 PUL A
FESS 7D DOO3 NOTVED TST DSTAT
FESS 27 03 BEQ NOTDUR
FESA DD ECOC JSR OUTCHD
FESD FE D007 NMOTDUR LDX OWTEXR
FE40 33 PUL D
FE4L 39 1)

* QUTPUT ON PORT @
FE42 CE 0000 DUTCHO LDX 448000
FE4S 20 03 A OUTCHE

« OUTPUT ON CONTROL
FEG? FE AOOA OUTCHA LDX PORADD
FE4A Fé DOOD OUTCHE LDA B PTRINZ
FESD €7 00 STA D 0,X
FEGF E6 00 OUTAZ LDA B 0,
FE7Y 37 ASR B
€72 37 ASR 3
FE73 24 FA | T T
FE?S A2 0 STA & 1,X
FE77 39 RIS

® QUTEEE - CHARACTER OUTPUT ROUTINE
SAVE B

Listing 6. OUTEEE routine.

SAVE XR
SAVE CHARACTER

CHECK CONTROL PORT

MO CHARACTER
CHARACTER; BET IT

WASK OUT PARITY DIT

18 1T CONTROL-S?

N0

YES; GET CONNAND AND 30 1T
FINISHED TESTING FOR COMMNAND

PAUSE STATUS ON?
" -
CLEAR SCREENT

YES; RESET PAUSE COUNTER

cr?

ONLY PAUSE AT END OF LINE
DECR PAUSE LINE CHTR

AND CHECK IT

BUST PAUSE. RESET CNTR

VAIT FOR RESTART CHAR
QUIT IF IT°5 A CR

COMTINUE WITH CR
PRINT ON PORT 07

NO

YES ’

PRINT ON CONTROL PORTY
L]

YES

OUTPUT VIA VIDED BOARBY
"o

YES

GUTPUT ON VIDEG

PRINT ON D?
"

YES
RELOAD XR AND D

QUTPUT 16 PORT ©
PORY
ACIA INTTIALIZATION ~

INITIALIZE FOR B BITS, 2 SB
GAIT UNTIL REABY

PRINT IT

allow a full screen after the
clear-screen command is exe-
cuted. Next, if the current
character is a carriage return,
then the line counter PAUCTR is
decremented and checked to
see if it is time to pause. If it is,
then the program resets the
pause line counter back to 15
(hex OF) and waits tor any char-
acter from the keyboard. If this
character is another carriage re-
turn, then the program aborts;
otherwise, It continues.

After all pause processing is
over, OUTEEE checks each of
the port flags (POSTAT, P1STAT,
VSTAT and DSTAT). If any of
these are nonzero, then the cur-
rent character is output via that
port. Note how VSTAT controis
video board output. Although
there is no monitor routine to
control this flag (other than its
being initialized), VSTAT allows
other programs to turn off
the video board—instead of
straight echoing of OUTEEE

EO09 7€ E270 FRATOV JWP FRONTO FRONT-TO SUBROUTINE ENTRY
* FRONTO SUDROUTINE - INITIALIZE BEGA AND ENDA ADDAESSES
E278 CE EOAA FRONTO LOX SFRONST
E27B 3D FC12 JSR PDATA PRINT “"FRON "
E27E DD FCOY JSR INEEE GET CHARACTER
E281 01 0D COP A 200D IS 1T A CR?
£283 24 03 BHE SETFT CONTINUE IF NOT
€205 7E FCOF JHP - CRLF 8N CR, DO CALF AND RETURN
€200 00 30 GETFT SUB A 9930 CONTINUE .. CHECK FOR DIGIT
E204 20 2F BAT BOMOTS MOV NEX
£28C &1 09 CHP A Be?
E20€ 2F OA BE SOTONE
£290 81 11 [TR
£292 28 27 DMl BONOTS NOT NEX
£294 BY 14 CHP A 0814
£294 26 23 BOT GOMOTS NOT WEX
E290 80 07 we AW CONVERT A-F 10 NUNMDER
€294 49 SOTONE ASL A 60T FIRST BIGIT
€290 48 ASL A
E29C 48 ASL A
€295 48 ASL A
E29E 14 A TERP SAVE 1Y
E29F DD FC18 JSR IMHEX GET SECOND DISIT
€242 19 DA CONBINE THER
E243 37 A002 STA A BEGA STORE LEFT TuO BIGITS
E246 32 FCID JSR BYTE GET NEXT TU :
£249 37 A0O3 STA A DEGA+1 STORE RIGHT TUD AS FRON ADDRESS
£24C LE EO4E LB eTOSTR
E2AF D FC12 JSR PDATA PRINT *T0
E202 B9 FCIE JSR BADDR GET TG ADBRESS
E285 FF 4004 STX ENDA STORE 17
£2D8 7E FCI P ouTS
£208 31 GOHOTS INS INVALID DIGIT; INCRENENT §P TO BYPASS
E20C 31 s <o THE CALLING ROUTINE AND RETURN ONE LEVEL
€280 39 RTS «osADOVE (TO NOTSTART)

Listing 7. FROMTO routine.

® “HD’ HEX BUNP COMNAND

EOD3 BD E278 MEXDNP JSR FRONTO

E0Dé FE ADO2 LOX BEGA GET STARTING ADDRESS

£0D? FF DOO S$1X SAVEX SAVE DUPLICATE K

£0BC 20 08 BRA MEXCON AND SKIP SVER NEXT VECTOR
« FREE 10 EOE2 (3)
* UARNST UARR START

(EOE3) OR¢ SEOE3
EOE3 78 FCO3 EOET U UARNST VECTOR TQ FC RO
: ¢ CONTINVATION OF MEX DU -

EOE6 D4 DO21 - HEXCON LDA A BAVEX+!

EOE? 04 FO AND A H9F0 ROUND BOUN TO WEXT O

EOED 97 DO STA & SAVEX+1

EQEE DD FCOF MEX JSR CRLF

EOF1 CE DO20 LOX WSAVEX SET LOCATION OF STARTING ADDR

EOF4 30 FC2¥ JSR -OUTANS PRINT 1T

EOF7 B FL30 JER OUTE EXTRA SPACE

E0FA €6 10 LA B 014 SET COUNTER TO 14

EOFC FE DO20 LBX SAVEX

EOFF DD FC2A MEXT JSR OQUT2HS PRINT NEXT BYTE

£102 09 DEX BACKUP POINTER

€103 BC A004 CPX ENDA LAST ADDRESS®

E104 26 01 BNE NEX2 CONTINUE IF NOT

E108 39 L34 OTHERVISE END

€109 o8 HEX2 Imx RESTORE POINTER

E104 54 DEC D DECREMENT COUNTER

E103 24 F2 BME HEX) CONTINUE LINE IF NOT FINISHED

E100 FF DO20 STX SAVEX SAVE CURRENT POINTER

€110 20 BC BRA MEX GET READY FOR WEXT LINE

Listing 8. Hex dump routine.

182 Microcomputing, September 1980

output—whenever memory-
mapped output or graphics are
desired.

OUTCHO and OUTCHM are
two character output routines
that output to port 0 and the
control port, respectively. The
actual port address used de-
pends simply on the address
loaded into the index register.

~ FROMTO Subroutine

MIKBUG’'s P, or Punch,
routine used locations BEGA
(A002-3) and ENDA (A004-5) to
hold the beginning and ending
addresses of memory to be
punched to tape. In a similar
way, HUMBUG uses these same
two locations, not just tor the PU
command, but for other com-
mands as well. The FROMTO
subroutine in Listing 7 is used
by these commands to ask for
these two addresses from the
control port.

This routine is easy to under-
stand but has two special
operating modes. After INEEE is

called for the first digit of the
“from" address in the third line,
that character is checked for a
carriage-return character. If a
CR is detected, then the routine
returns to the calling program
without changing BEGA and
ENDA. Next, even if this charac-
ter is not a return, if it is not a
valid-hex digit, then the subrou-
tine returns to the program one
level above the calling program;
that is, it returns to the program
that called the program that
called FROMTO. In the case of
these monitor routines, this will
always mean a return to the hot-
start location.

Although FROMTOQ is buried
in EOROM, there is an entry vec-
tor to it in location E0Q9, so that
its calling- address does not
change even if EOROM is
modified.

Monitor Commands

Except for the ME and JU
commands in FCROM, all other
commands are subroutines that

€303 CE EOAD FIND LDX WNANYST

€308 99 FC12 JSR PDATA ASK "HOU WANY BYTES™

€300 0D FCO9 JSR IMEEE GET NUMBER

E30E 80 30 SUB A 430 CONVERT FROM ASCII

£310 27 &C SEQ FINDS IF = 0

€312 23 4A Bl FINDS IF LESS THAN 0

£314 81 03 CHP A 893

E316 2E &4 BGT FINDS IF GREATER THAN 3

€310 97 D025 STA A FINDNO STORE NUNBER OF BYTES

€310 9D £C30 JSR - 0UTS

E31E CE ETEM LDX AUHATST

€321 B FC12 JSR PDATA ASK “WHAT BYTES*

€324 F4 D025 LDA B FINDND GET NUMBER

€327 CE D022 LBX BUHAT

£324 37 FIENTR PSH B

€328 BB FCID JSRBYTE "ENTER A BYTE

£32€ 33 PUL D RESTORE COUNTER

€32F A7 00 STA A 0,X STORE IT

£331 08 X

£332 54 DEC B

€333 26 £3 BNE FIENTR ENTER NORE, IF WEEDED

€335 2D £278 JSR FRONTO GET BEGA AND ENDA

£330 FE 4002 LBX BEGA GET READY T0 LOOK

E338 F6 D025 FINDY LDA D FINBNO WAIN FIND LOOP

E33E 44 00 LDA & 0,X 6ET FIRST BYTE

€340 01 D022 CHP A WHAT

€343 26 31 BNE FINDA URONE BYTE

£343 34 e

€348 27 1t BEQ FIND2 FOUND ONE CORRECT BYTE

€348 AS 01 LDA & 1,X GET SECOND BYTE

£340 31 9023 CHP A UHAT+

€340 26 27 BNE FINDA URONG

E34F SA DEC B

£330 27 07 JEQ FIND2 FOUND TUO CORRECT BYTES

€352 Aé 02 LDA & 2,X GET THIRD BYTE

€354 D1 D024 CAP A WHAT+2

E357 26 10 INE FINDA URONG BYTE

£339 FF D020 FIND2 STX SAVEX FOUND CORKECT BYTES

E35C 99 20 BER FINDS PRINT CRLF VIA VECTGR AT FINDS

EISE CE 0020 LDX WSAVEX POINT TO ADDRESS WHERE FOUND

€341 B0 FC2D JSR OUTAHS PRINT IT —

€344 B9 FC30 JSR Ours ONE NORE SPACE

€367 FE 3020 LOX SAVEX

£36A 09 DEX BACKUP ONE BYTE

E363 Cé 04 LDA B #4 READY TO PRINT FOUR BYTES

€360 BD FC2A FINDI JSR OUT2HS PRINT BYTE

£370 SA DEC D

€371 26 FA WNE FIND3 PRINT FOUR BYTES

€373 FE 0020 LDX SAVEX RESTORE INDEX REGISTER

E376 BC AOO4 FINDA CPX ENDA SEE IF DONE

€379 27 03 BEQ FINDS YES

E378 08 X 0

£€37C 20 » BRA FINDI KEEP LOOKING

€37E PE FCOF FINDS NP CRLF DO LAST CRLF AND RETURN TO FCROM UHEN DONE
Listing 9. Find routine.

Microcomputing, September 1980 183

normaily return to the hot-start
entry point and are also user
callable. Some of them are to
the point, such as PU and LO,
which are similar to MIKBUG’s P
and L routines, except for the
use of an ACIA instead of a PIA.

Let’s look at the other routines.

Listing 8 shows the HEXDMP
routine. As with several other
routines in EOROM, this one is
sandwiched between MIKBUG-
compatible calis. In this case,
the monitor restart vector at

s “FH* CONMAND - FILL MEMORY UITH CONSTANT

€381 30 €270 FILL JSR FROMTO GET FROM-TO ADBRESSES
£304 €€ EIC3 LBX BUITHST

E387 BD FC12 JSR PDATA ASK FOR DATA

£38A BD FCID R YVTE

E383 FE 4002 LBX DEGA GET STAKTING ADDRESS
€390 09 BEX

€391 o8 FILOOP IaX

E£392 A7 00 STA A 0,X STORE THE BYTE

E3%4 30 AOO4 CPX ENDA SEE IF DONE

E397 24 F8 ME FILOOP CONTINUE OF NO

E399 3% L] QUIT WMEN DONE

Listing 10. Fill memory routine.

€394 B) E278 SUM SR FRONTO
E3?S FE 4002 LdX BEGA
€300 oF CLR A

€3A1 S5F CLR B

€342 £3 Q0 SURLP ADB B 0,X
E3a4 89 00 ABC & W0
E3A6 BC A004 CPX ENBA
£E3a9 27 03)EQ SUNDON
E348 08 nx

E3AC 20 Fe BRA SUMLP
€INE 37 D020 SUNDON STA A SAVEX
€33t F2 D021 STA B SAVEX+t
€334 CE 3020 LEX WSAVEX
€E3D7 7€ FC20 VECANS JNP QUTANS

* SUM - HEMORY CHECKSUN

GET ADDRESS LINITS
GET STARTING ADDRESS

ABB TO CMECKSUM

ALSO ABD CARRY YO SECOND BYTE
LAST ADDRESSY

YES

%0, SO INCREMENT AND

STORE SUM UHEN DONE

POINT TO CHECKSUN

OQUTPUT CHECKSUM AND RETURN UHEN DOZL

Listing 11. Checksum routine.

EQE3J splits it in two parts.

This listing shows how
FROMTO is called at the be-
ginning to allow beginning and
ending addresses to be
specified. The beginning ad-
dress is moved from BEGA to
temporary location SAVEX, but
the second byte of that address
is ANDed with $FO0 to force the
last digit to always be 0. Thus,
the 16 bytes printed on a line will
always start with a location end-
ing with 0.

Subroutines to perform the Fl
(find), FM (fil memory), CS
(checksum memory), Al (ASCH
input), AO (ASCIl output) and
MO (move memory) commands
are shown in Listings 9 through .
14, respectively. Most of these
are easily understandable.

Note how the move memory
routine checks the old and new

addresses to see whether
memory contents are being
moved to lower or higher ad-
dresses. This is necessary to
avoid erasing data if the new
locations overiap the old loca-
tions. If the memory contents
are being moved to lower ad-
dresses, then the move starts
with the lower address. But if
the move is to higher addresses,
then the highest locations are
moved first. In this way, even if
the old and new locations over-
lap, data will be moved out of
the way before it is written over.

The routine for the DE, or
‘‘DEsemble,”’ command is
shown in Listing 15. It consists
of a short calling program
named DESEMB and a subrou-
tine called PRNTOP, which does
most of the work.

DESEMB begins by calling

* ‘AL COMMAND - ASCII INPUT ROUTINE

€525 0D E0O9 ASCIN JSR: FRONTO GET ADDRESS RANGE

€320 39 FCOF J$R CRLF

£32) FE A004 LIX ENDA GET LAST ENPTY ADDRESS
E32E FF DO2C STX SAVEX SAVE IT

E331 FE 4002 LBX BEGA GET STARTING ADDRESS
£334 04 DEX

E333 08 ASCI2 INX

E536 B0 FCO9 - JSR INEEE GET MEXT CHARACTER
€S53 A2 00 $TA A 0,X . STORE 1T

£330 A1 00 ChP A 0,X SEE IF IT STORED OK
ES30 26 08 SNE ASCI3

£33F FF 4004 8TX ENBA STORE ENDING ADDRESS
£542 0C 302¢ . CPX SAVEX CHECK IF RUN OUT OF MEMORY
€543 24 EE T BNE ASCI2 N0, $0 GEY MORE

ES47 CE ESAF ASCI3 LBX RESTR HER FULL OR BAD, SO..
£540 39 FC12 ISR PAATA PRINT ERROR

£54D 20 F9 BRA ASCID 60 T0 REPEAT

E34F 20 ESTR FCB

7 W Ey Ry “R, ‘0, 'R 4

Listing 12. ASCII input routine.

€554 B E00Y ASCOUT JSR FROMTO

T “AD’ CONMAND - ASCIT OUTPUT ROUTINE

BET ABBRESS RANGE

ESSY BB FCOF JSR CRLF

€33C FE 4002 LIX BEGA OET STARTING ADDRESS
ESSF Aé 00 ASCO2 LDA A 8,X BET NEXT CHARACTER
E341 B3 FCOC JSR OUTEEE OUTPUT IV :
ES44 DC A004 P ENDA SEE IF DONE

€567 27 03 BEQ ASCO3 YES

ES4? o8 X -

ES6A 20 F3 BRA ASCO2 REPEAT IF MNOT

ESC 3¢ ASCOY RTS RETURN UHEN DONE

Listing 14. Move routine.

“ENTER OLD ADDRESSESt’
4
“ENTER NEU ADDRESS:

NEULOC SAVE
* NOU CHECK FOR FORUARD XOVE OR BACKUARD NOVE

E36D 43 OLDSTR FCC
E38t 04 (44]
€582.-45 BEUSTR FCC
E376 04 FC3 4
ES?? CE E343 MOVE LBX QOLDSTR
E394 B FC12 J5R PDATA
€399 §D E00Y JER FRONTD
E3A0 DD FCOF ISR CRLF
ESA3 CE E582 LDX ONEMSTR
E346 3D FC12 JER - PDATA
E5A? DD FCIE JSR MR
ESAC FF D042 STX
ESAF Dé 4002 LBA A BEGA
E3D2 BO D042 SHD A NEULOC
ESB5 23 2€ M BACK
€307 26 O BNE FORURD
ESDY B6 AGO3 LBA A DESAH!
€33C B0 D043 SUD A NEBLOCH
ESDF 25 24 5CS BACK
E3C1 24 01 BNE FORURD
ESC3 3¢ HEXIT, RTS

s FORUARD NOVE
ESCA FE AD02 FORWRD LBX DEGA
ESC? FF 3020 TTSTX SAVEX
ESCA FE DO2C FUDT LBX -SAVEX
E3CH 09 DEX
ESCE DC AOO4 CPX ENDA
£301 27 FO DEQ MEXIT
ESD3 08 X
ESBA A6 0O LDA A 0,X
€304 08 X
ESB? FF BO2C 8TX SAVEX
ESHA FE D042 LDX NEWLOC
€500 A7 00 STA A 0,X
ESDF 08 Inx
ESEQ FF D042 $TX NEWLOL
E3£3 20 ES BRA FUD1

+ BACKUARD NOVE
E3ES B4 #4004 DACK LDA A ENPA
ESE® Fé AOO3 LOA B ENDA+1
ESED FO 003" SUD D DEGA+1
ESEE B2 A002 SBC A .BEGA
E3F1 FB D043 ADD B REWLOCHY
ESFA° 09 BOA2 ABC A NEWLOC
ESF7 37 D042 STA A REULOC
£5FA F7 3043 STA B NEULOC+S
E3FD FE A004 LBX ENDA
£400 FF DO2C STX SAVEX
€403 FE DO2C DACKY LDX SAVEX
E606 08 nx
£607 BC A002 CPX BEBA
E60A 27 37 DE@ MEXIT
Es0C 0F BEX
E40D A6 00 LBA A 0,X
€60F 09 BEX
E610 FF DO2C STX SAVEX
€613 FE BO42 LIX NEULOC
Eb16 A7 OO STA A 0,X
Eb18 09 DEX
€619 FF D042 STX - MEWLOC
E61C 20 ES BR& DALKY

Listing 13. ASCI! output routine.

ASK FOR OLD ABBRESSES

ASK FOR NEW ADDRESS

IF NEWDOLD

IF O

If =, CHECK THE REST
IF NEWOLD

N0 NOVE IF NEW=OLB

SAVE COPY OF STARTING ABDRESS
CHECK FOR END

EXIT IF DONE

BET MEXT DYTE

BUNP FRON-POINTER

SAVE IYTE

BUNP TO-POINTER

AND REPEAT

CONPUTE END OF NEW AREA

LENGTH OF OLD

STORE LAST LOC OF NEV
SAVE COPY OF LAST LOC
CHECK FOR EMD

EXIT IF DONE

GET NEXT BYTE

BUNP FROM-POINTER
SAVE IYTE

BUNP TO-POINTER

AND REPEAT

184 Microcomputing, September 1980

FROMTO to get beginning and
ending addresses for the dump.
The beginning address is then
saved in SAVEX. Next, PRNTOP
is called.

PRNTOP uses a method of
analyzing the length of an in-
struction known as the Thomp-
son Lister, named after its origi-
nator, Noel Thompson. It begins
by printing the address in
SAVEX. Then it gets the op code
of the instruction and, through a
series of comparisons, deter-
mines the length of that in-
struction in bytes. Finally, it
prints the operation code plus
any following bytes and stores
in SAVEX the address of the fol-
lowing instruction.

The rest of DESEMB simply
checks to see whether all the
data requested has been printed

and branches back to print more
if not. PRNTOP is an important
subroutine because it is also
used in single-stepping.

Debugging Functions

HUMBUG's strong point is its
debugging facility. Let's look at
each of the routines used in de-
bugging commands such as BR
(used for setting and resetting
breakpoints) and SS (for single-
stepping).

When the system was first
started, the cold-start routine in
E4ROM filled each of the twelve
locations of BKTAB with FF.
BKTAB is used to store the cur-
rent four breakpoints as shown
in Table 1.

In other words, the first three
bytes are used for the first
breakpoint, the next three are

186 Microcomputing, September 1980

used for the second breakpoint,
and so on.

For each breakpoint, the first
two bytes contain the address
of that breakpoint, while the
third byte holds the operation
cdde of the instruction at that
location. A breakpoint is set up
by substituting an SWI instruc-

tion (3F) for the instruction origi-
nally there, so that the program
will return to the monitor when it
reaches the breakpoint. Since
putting iri the SWI would erase
the first byte of the instruction
supposed to be there (the op
code), this op code is stored in
the BKTAB table so it can be

EAD4 D E007 DESEND JSR FRONTO
E409 FE A002 LBX DEGA
E4BC FF DO2C STX SAVEX
EABF DD E4ADY DES2Z JSR PRNTOP
€AC2 D4 A004 : LBA A ENDA
EACS Fé A003 LDA D ENDA+t
EACE FO DO2D SUB 5 SAVEX+1
E4CH B2 DO2C SBC A SAVEX
EACE 24 EF 3CC DES2
€400 39 RTS

* “BE’ COMNAND - DESEMDLER DUHP

ASK FOR ADDRESSES

60 TO PRINT CURRENT LINE
SUBTRACT NEXT FROM LAST

RETURN IF MEXT <= LAST
OTHERVISE EXIT

* PRNTOP -~ SUBROUTINE TO PRINT ADDRESS AND CURRENT INSTRUCTION

EADY DD FCOF PRMTOP JSR CRLF

E4D4 CE DO2C LDX #SAVEX GET LOCATION OF NEXT ADBRESS
£4D7 3D FC2D JSR ' OUTANS PRINT 1T :

EADA DD FC30 Jsk QTS

£4DD FE DO2C LBX SAVEX @ET ABDRESS OF INSTRUCTION
EAEQ A6 00 LBA A 0,X 8ET OPERATION CODE

EAE2 D7 DOAA STA A INSTR §AVE IT :

EAES BD FC24 JSR QUTZHS PRINT IT

E4E8 FF DO2C STX SAVEX INCREMENT SAVEX

EAEB SF CLR 8 BYTE COUNTER

EAEC B4 D044 LA A INSTR

ECEF B1 BC CHP A #98C ANALYZE OP CODE FOR NG OF BYTES
E4F1 27 18 BEQ LENTH3 .

EAF3 B1 GE CHP A 998

EAFS 27 14 BEQ LENTH3

E4F7 81 CE CAP A #9CE

EAF9 27 10 BEQ LENTRY

EAFD 84 FO AND A §SFO

£4FD 81 20 CHP A 4320

EAFF 27 0B BEQ LENTH2

501 81 60 CHP A 4940

£503 25 08 BCS LENTHI

£505 84 30 D A ¥930

507 81 30 CAP A %330

£509 26 01 BNE LENTH2

E500 5C LENTH3 INC B 3-DYTEL8C, 8E, CE, 7X, DX, FX
ESOC 5C LENTH2 INC B 2-DYTE12X,6X,8X,9X,AX, CX, DX EX
E50D F7 044 LENTH! STA B COUNT 1-DYTE$1X, 3X, 4X, 5%

€510 01 _noP

€511 01 NOP

€512 27 10 BEQ POP3

ES14 78 DOAG BEC COUNT

€517 27 03 JER POPY

519 §D FC2B JSR OUTANS PRINT 2 BYTES

£51C 20 03 A POP2

ESIE BB FC24 POP1 JSR OUTZKS PRINT ONE BYTE

ES21 FF BO2C POP2 STX -SAVEX'

INCREMENT NEXT

£524 39 POP3 RTS

Listing 15. DEsemble routine.

s “BP/ COMMAND - PRINT BREAKPOINT LOCATIONS
E6OB Cé 30 BPRINT LBA D #°0 DREAKPOINT NUMDER IN ASCII
€68D CE 036 LDX §BKTAD
€690 FF D02C STX SAVEX
€493 5C BPRU - INC D
€94 €1 35 - cHP B 9’5 STOP AT S BREAKPOINTS
€696 26 O ME BPR2)
£498 39 RTS RETURN UHEN DONE
E499 DD FCOF BPR2 SR CRLF PRINT CR
E69C 17 ™ SET 3P NUNBER
E£69D 3D FCOC JSR BUTEEE - PRINT DREAKPOINT RUMBER
E6A0 FE 202C LDX BAVEX BET ITS LOCATION IN TABLE
E6A3 M6 00 LDA A 0,X GET 3P ADDRESS
E6AS 81 FF CHP & BSFF 1S THERE ONE?
E647 26 05 BNE BPRI YES, 6O PRINT IT
E6A9 08 X
E6AA 08 INX NO, UPDATE POINTER
E6AD 08 X
£6AC 20 0C BRA BPR4 AND REPEAT
E6AE BB FC30 PRI JSR OUTS PRINT SPACE
E4B1 FE DO2C LDX SAVEX :
E4B4 BD FC2D JSR QUTAHS PRINT ADDRESS OF BREAKPOINT
€687 BD FC24 JSR OUT2HS PRINT 0P CODE
E6BA FF DO2C DPR4 STX SAVEX SAVE BKTAD LOCATION OF NEXT
€603 20 D4 BRA DPRY AND REPEAT

Listing 16. Print breakpoints routine.

restored later.

When the table is first ini-
tialized, it is filled with FFs.
Since a breakpoint can never be
placed at location FFFF {(which
is in ROM and contains a vector,
rdther than an instruction), hav-
ing an FFFF as the address of
each of the breakpoints is an im-
possible cohidition used to signi-
fy that the breakpoirt doesn't
exist.

BP Command

The BP monitor command
prints out the locations and
operation codes of the current
breakpoints. For instance, if
breakpoint number 2 is at loca-
tion 1000, the operation code
that belongs in that location is
86, and all other breakpoints are
ynused; then the printout would
be as follows:

1
2 1000 86
3

4

Listing 16 lists the BPRINT
subroutine, which prints the
breakpoints. It simply scans
through BKTAB and prints out
the contents for each break-
point that doesn't have an ad-
dress of FFFF. The only unusual
part of the routine is that the
loop -counter, which counts up
to four breakpoints, is main-
tained in ASCIL. It goes from 31
(the ASCII code for a 1) up to 34
({the ASCI! code for a 4) so that it
functions both as a counter as

‘well as the number printed at

the start of each line.

BR Command

Setting and resetting break-
points is done with the BR com-
mand, which is executed by the
BREAK subroutine shown in
Listing 17.

For example, if the BR com-
mand is used to set up break-
point number 2 at location 1000,

¢ ‘DR’ COMNAND - SET/RESET UP TO FOUR BREAKPOINTS
EAIE 8D A3 DREAK BSR BXNODW SET NUNDER OF DESIRED BREAKPOINT

£620 FF Do2C STX SAVEX SAVE ARDRESS -
€623 80 22 PSR DERASE G0 ERASE OLD ONE

© €628 CE €382 ° LBX WNEUSTR PRINT “ENTER NEU ABDRESS: *
£628 99 FC12 JOSR PBATA
£628 BB FCIE SR BADMR GET ADBRESS

* E62E FF D042 $TX MEULOL . ‘
€431 €6 00 LDA B 0,X GET PRESENT OP CODE
€433 84 3F LBA A 883F SET SWI INSTRUCTION
E635 A7 00, STA A 0,X subsTITUTE. IT, :
€437 FE DO2C LDX - SAVEX GET POINTER TO BRKTAB AGAIN
E634 D6 DOA2 LDA & NEULOC
€430 A7 g0 STA 4 0,X STORE ADDRESS IN TABLE
E63F B 3043 L3A A NEWLOCH!
€642 &7 01 STA A 1,X
E644 E7 02 STA B 2,X STORE DELETED OP CODE
E446 39 1] AND RETURN

©+ o ERASE PREVIOUS BREAKPOINT, IF ANY, AND RESTORE OP CODE

€647 €6 02 DERASE LDA B 2,X SET 0P CODE
€649 A6 00 LBA A 0,X GET PART OF ADBRESS
£643 81 FF CHP A BSFF UAS THERE A BREAKPOINT?
E64D 27 0B BEQ BEEXIT NG, EXIT
€44F EE 00 LIX 0% YES, GET ADDRESS OF BREAK
E4S1 E7 00 STA B 0,X RESTORE 0P CODE
€653 FE DO2C LBX | SAVEX
€654 84 FF LDA A O9FF !
€450 A7 00 STA A 0, ERASE BREAKPOINT TABLE ENTRY
€634 39 BEEXIT RTS AND RETURN

* BKNUM ROUTINE -~ GET NUMBER OF DESIRED BREAKPGINT AND POINT
s TO 1TS LOCATION IN BKTAD TABLE

630 20 BUSTR FCC * NUNBER:

€664 04 i FCy 4.

€445 CE E450 BKMUN LBX _ WBNSTR

€649 9D FCI2 JSR T PDATA ‘

€648 3D FCOY ISR INEEE GET BREAKPOINT WUMNBER
E44E 80 30 SUB A 9330 CONVERT FRON ASCII
£670 20 14 BN NGEXIT IF NEGATIVE

€672 27 14 BEQ NGEXIT' IF ZERO

£674 81 04 CHP A 834

€676 26 10 B6T NBEXIT IF GREATER THAN 4
€478 36 PSH A

€679 DD FC30 JSR - OUTS

E67C 32 PUL A

E473 CE D034 LDX WBKTAD

680 44 WN1 DEC A

€601 27 07 BEQ OKEXIT EXIT UHEN INDEX POINTS CORRECTLY
£683 08 It

£684 98 nx BUAP INDEX BY 3

£483 08 N

€484 20 FB BRA BKNY AND REPEAT

E488 31 NSEXIT INS FIX STACK TO BYPASS CALLING ROUTINE ON ERROR
€68y 31 NS

£68A 39 OKEXIT RYS§ RETURN UHEN DONE

Listing 17. Breakpoint set/reset routine.

Microcomputing, September 1980

187

* DREAKPOINT RE-ENTRY POINY AFTER SUI IN MAIN PROGRAN

E6DF B3F AQO® DBKRETN STS 14 SAVE USER STACK POINTER

E6C2 30 8% TRANSFER TO INDEX

€4C3 OE DOF LPS WeDOF RESET TO NMONITOR STACK

£6Co 45 06 181 (13 BECREMENT USER PC 10 POINT...

E6C8 24 02 BNE RONLY +ooT0 SUI, NOT PAST IT

E4CA 6a 05 DEC 3,X BECR LEFY BYTE

€6CC A 04 ROKLY BEC 4,X DECR RIGHT BYTE, AND COMTINUE TO PRINT REG
¢ ‘RE" CONMAND - PRINT USER REGLSTERS FROM STACK

EoCE 3D FCOF REGIST JSR CRLF

E4D1 FE AOO8 . LIX P POINT TO USER STACK

€404 €4 O) LA B3 ,X GEY CC REGISTER

Eebé 39 ASL)

E6D7 58 AL p READY FOR SHIFTING INTO CARRY

€698 CE 0006 Lhx 8 SET COUNTER

({11 1§ .RELOGP ASL » NOVE NEXT BIT INTO CARRY

E4BC 84.30 LhA A 8330

£4DE B 00 ADC A 0 COMVERT TO ASCII

E4EQ BD FCOC JSR OUTEEE PRINT 1T

E6EY 09 BEX BUNP COUNTER

E4E4 26 F3 ONE RELOOP PRINT NEXT BIT

E6E4 BY FC30 J6R 0UTS PRINT SPACE

E4E? FE AO0S [8] SN 14 POINT TO USER STACK AGAIN

E4EC 08 Inx STEP PAST CC REGISTER

E4ED 08 nx POINT TO B ACCUNULATOR

E4EE BB FC2A JSR OUT2HS PRINT B

E4F1 DD FC2A JSR DUT2HS PRINT A

€4F4 BB FC2D JER OUT4HS PRINT INDEX

E6F7 DD FC20 JSR OUTAMS PRINT PC

E6FA B6 AOO8 LDA A SP

E4FD Fo A0OY LDA B SPe1 GET CURRENT USER STACK

£700 CB 07 ADD D W7

€702 8% 00 ABC A WO CHANGE BACK TO UALUE IT WAD IN USER PGM

€704 B7 DO2C STA A SAVEX

€207 F2 02 8TA B BAVEX+) TENP SAVE IT

E70A CE DO2C LBX WSAVEX POINT TO IV

£700 BB FC2D JER OUTAHS PRINT IT

£210 7€ FCOS JNP HOTST AND RETURN TO FCRON

Listing 18. Breakpoint reentry and register print routines.

the whole exchange with the
monitor would be:

BR NUMBER: 2 ENTER NEW ADDRESS:

1000
(user's entries are underlined).

Only a number from 1to 4 is
allowed for a breakpoint
number; any other entry wili re-
turn to the command loop with-
out doing anything.

As soon as a valid breakpoint
number is entered, the old
breakpoint (if any) is restored
and erased from the table. If the
new address is valid, then the
new breakpoint is set up; but if
the new address is a carriage re-
turn or any other invalid charac-
ter, then no new breakpoint is
entered. This is, therefore, a
good way of erasing break-
points.

Listing 17 first goes to the
subroutine BKNUM, which asks
for the breakpoint number and
points the index register at the
corresponding entry in the
BKTAB table. This pointer is
then saved in SAVEX.

Next, subroutine BERASE
erases the old breakpoint (if any)
from the tabie. It looks at the
first byte of the breakpoint ad-
dress in the table. If this byte is
not FF (no breakpoints can exist
at locations FF0O through

FFFF, since this is all ROM),
then it gets the op code from the
table, puts it back into the
original address and puts an FF
into BKTAB to make the address
invalid.)

Finally, the program asks for
the new address and then puils
a switch. The op code is yanked
out of the breakpoint location, a
3F is substituted, and the break-
point address and the op code
are placed into BKTAB.

sSwWi Reentry

What happens when a user
program runs and hits a break-
point? You may remember from
last month’s article that FCROM
has an address of FFED in the
SWI interrupt vector at location
FFFA. When an SWI interrupt
occurs, the 6800 will look into
location FFFA to get the ad-
dress to go to. In this case, it will
start executing a program at
FFED.)

But there were two instruc-
tions starting at FFED that load-
ed into the index register the
number in location A012 and
then executed JMP 0,X. Hence,
the number in A012 is a pointer
to the real starting point of the
SWi service routine. This pointer
is in RAM so it can be changed

188 Microcomputing, September 1980

by user programs.

A012 is initialized during the
initial power-up sequence to
point to BKRETN, so an SWl in-
terrupt eventually winds up at
BKRETN. This routine is shown
in Listing 18.

When an SWI gets us to
BKRETN, the contents of the
stack pointer are stored at loca-
tion SP, or location AQ08. At this
point, the stack pointer points to
the next empty location of the
user stack, just under the seven
bytes that hold all the register
data that was dumped into the
stack by the 6800 when it per-
formed the SWI.

The next instruction following
BKRETN transfers the contents
of the stack pointer to the index
register. However, the 6800 adds
1 to this number before it loads
it into the index register. Thus,
now the index register points to
the last of the seven bytes, in-
stead of the next empty loca-
tion.

The stack now has the fol-
lowing seven bytes:

Program counter (low)
Program counter (high)
Index register (low)

Index register (high)

A Accumulator

B Accumulator)
CC Reg.—IX now points here
Empty—SP now points here

In the next step, the stack
pointer is loaded with the ad-
dress of the monitor stack at
DO7F, so that ali foliowing
operations use a different stack
area.

The next four instructions
subtract one from the PC (pro-
gram counter) contents stored
in the user stack. The PC, as
stored after the SWI, points to
the next instruction after the
SW1I itself. Subtracting one
points it back to the SWi, so that

when the contents of the PC are

printed, it will indicate the ad-
dress where the breakpoint oc-
curred, rather than the address
of the next byte. This is essen-
tial, so that when we continue

trom the breakpoint we resume
at the instruction which had
been replaced by the break-
point, rather than the next byte
after it.

After this is done, the pro-
gram continues into the same
routine that is executed for the
RE, or register, dump command.

This REGIST routine uses the
contents of SP to point to the
user's stack. Its function is
similar to SWTBUG’'s R com-
mand, but it does it in a slightly
different way. First, it separates
the bits of the condition code
register and prints them sepa-
rately, instead of printing them
as a hex number, as SWTBUG
does. Second, it adds 7 to the
stack pointer before printing it.
For instance, if SWTBUG
printed a register dump as
C4 BB AA 1234 5678 4321
HUMBUG would print it as
000100 BB AA 1234 5678 4328.

Why the difference in the
stack pointer? SWTBUG prints
the stack pointer the way it ex-
ists after the breakpoint SWI in-
struction; HUMBUG prints it the
way it was just before the break-
point.

Listing 19 shows the steps
used for executing the CO com-
mand. SWTBUG has a G com-
mand that is used both for start-
ing programs as well as for con-
tinuing after a breakpoint; HUM-
BUG has separate GO and CO
commands. :

GO is used just for starting a
program. It always uses the con-
tents of A048 and A049 for a
starting address. CO, on the
other hand, is used only for con-
tinuing after a breakpoint or
single-step. It can’t be used to
start a program, since the con-
tents of SP are undefined at the

beginning.

SS—Single-Stepping

Executing the singlie-step
command was shorter and sim-
pler than | expected. The entire
single-step routine is shown in
Listing 20.

E713 BE A008 CONT LDPS SP
€216 33 L1}

* ‘C0’ CONNAND - CONTINUE AFTER A DREAKPOINT

BET USER STACK POINTER
AND RETURN TO WIS PROGRAM

Listing 19. Continue from breakpoint routine.

190 Microcomputing, September 1980

The SS command uses the
contents ot the SP, or stack
pointer, location, which is ini-
tialized only upon reentering
after a breakpoint, so SS can on-
ly be used after breakpoints.
This is a minor annoyance at
first, but you’'ll get used to it.
(EBROM actually has an ST, or
STart, command to get around
this, but that is not necessary
for our purposes.)

When the SS command is
called, the STEP routine of
Listing 20 uses the user stack
pointer to get the current user
program counter and saves it in
USERPC and also in SAVEX.
Then it goes to PRNTOP, which
uses SAVEX to find the instruc-
tion, prints it and then updates
SAVEX to point to the next in-
struction. This pointer is also
left in the index register when
PRNTOP finishes.

The next part of STEP, start-
ing at location E725, uses this

pointer to pull out the op code of
this instruction, save it in mem-
ory and replace it with a 3F or
SWI. It then checks whether this
3F was stored. If not, it goes to
NOGOOD to print the error
message NO! This prevents
single-stepping through ROM or
nonexistent memory.

Eventually, the monitor will
jump to the instruction to be per-
formed and execute it. Right
after this instruction is an SWI,
which will return to the monitor
immediately after the one in-
struction being executed. But
what if that instruction is a jump
or branch, so that the following
SWi is never executed? The next
part of the monitor, starting at
OK1, checks for that.

If the instruction about to be
stepped through is a jump or
branch, then another SWI is
placed at the location where the
computer will jump. There are
now two SWI instructions, so

Listing 20. Single-step routine.
¢ ‘S’ CONMAND - SINGLE STEP AFTER BREAKPOINT
E717 FE A008 STEP LOX SP GET USER STACK POINTER
€714 EE 06 LI 6,X SET USER PC -
E?1C FF DO2E 81X USERPC SAVE IT
E71F FF DO2C STX SAVEX
€722 BB E4AM JSR PRNTOP PRINT ADBRESS AND INSTRUCTION
s REPLACE NEXT INTRUCTION VITH SMI
€725 FF D030 STX NEXT SAVE ADBRESS
£228 A6 00 LA A 0,X GET INSTRUCTION
E724 87 D032 STA A NEXT+2 SAVE 1T
E72D B¢ IF LDA 4 W83F GET S¥1
E72F A7 00 STA A 0,X
E731 A1 00 NP A 0,X CHECK 1T
£733 27 02 BEQ WK 1T BTORED 0K
€735 20 35 BRA NOGOOD ABORT IF ERROR
* NEXT, SEE IF A DRANCK OR JUNP IS INVOLVED
€737 Bé DO4a 0Kt LDA A INSTR SET OP CODE
E73a 81 20 CNP & #820
£73C 25 04 BS MOBR N0 BRANCH
E73E B1 30 CHP A 8830
€740 25 4E BCS YESBR YES
€742 81 39 KOBR CHP A 8939 CHECK FOR RTS
E744 26 03 DNE ROIRTS 0
€746 7E E7EF JAP RISIN YES
E749 81 1B NOTRTS CNP A #9433
E740 27 1F BEQD NOGOOD DON‘T DO RTI
E74D 61 3F CHP A QO3F
€74F 27 13 BEQ NOGOGD ITTO FOR SUI
€751 B1 &E CHP A 484
E733 26 03 PRE MOTJIN
E?733 7€ E7DE JINV NP JINBEX $K FOR INDEXED JuNPS
E758 81 AD NOTJIN CHP A 284D
E75A 27 F9 BEQ JIWV BITTe
E75C 81 7E CHP & BS7E ' ’
E73E 27 77 BEQ JEXT 0K FOR EXTENDED JNNPE
£760 91 BB ChP A 0933
€762 27 73 JEQ JEXT MNTTe
€264 81 80 CAP A %98D .
E766 27 48 BEQ YESER BSR IS A BRANCK TOO
€768 81 3E CHNP A BO3E
E76A 24 15 BNE NORMAL OK IF NOT ual
» REFUSE TO BO SONE INSTRUCTIONS
E76C CE E77D NOGOOD LOX BNOSTR
E74F BD FC12 JSk PDATA PRINT “NO'"
E772 FE D030 LBX NEXT
€775 Bé D032 LDA A NEXT+2)
E778 A7 00 STA & 0,X RESTORE NEXT INSTR ON ERROR
€774 7€ FCO6 JHP HOTST
€770 4t NOSTR FCC “NOY”
€780 04 FCB 4
* NORMAL INSTRUCTIONS ARE EASY
£781 B4 FF NORNAL LBA A RSFF ERASE ALT ADDRESS LOC
E783 B7 9033 STA & BRANCH,
€786 CE €790 GOUSER LDX WSSRETN REDIRECT SUI RETURN
E789 FF AO12 8T SULJwP
E78C DE A00B L) sr GET USER STACK
E79F 3B RT1 60 10 vsER

that if a conditional branch is in-
voived, we'll stop whichever way
we go. (And, of course, the
deleted Instruction is saved.)
This is somewhat compiex for
relative branches and indexed
JMPs and JSRs, but this is

handied by routines that add or -

subtract offsets.

There are other instructions
that need checking. An RTS is
executed by fetching the return
address from the stack. HUM-
BUG doesn't attempt to execute
the difficult RT1, SWland WAl in-
structions.]

Once everything is set up, the
program advances to GOUSER
at location E786, ready to do an
RTi to go to the user program.
But first we must initialize the
RAM location SWIJMP at A012
with the return address of
SSRETN (instead of BKRETN)
just before we go to the user pro-
gram. Otherwise, the SWI, which

will return to HUMBUG, will

return us to the breakpoint
routine instead of back to the
single-step routine.

After the single-step is per-
formed, the computer returns
back to the single-step program
at SSRETN. This part of the pro-
gram now resets SWIJMP to
point back to BKRETN, erases
the SWI instruction and re-
places it with the original byte,
erases the alternate SWI, which
had been placed into the pro-
gram for jumps and branches,
and then goes to BKRETN to
save the stack pointer and print
registers as it does after a nor-
mal breakpoint.

Conclusion

With this information, you
can now construct your own ver-
sion of HUMBUG. If you prefer
to obtain complete source code
on disk or cassette, or burned
EPROMSs, contact Star-Kits, PO
Box 209, Mt. Kisco, NY 10549. 8

* RETURN POINT FRON SINGLE STEP

€790 CE E4DF SSRETN LDX WDKRETN

RESTORE BREAK ADBRESS
RESTORE MEXT OP CODE

€793 FF A012 STX SUIJne
£796 FE D030 LDX MEXT
E797 36 D032 LDA A NEXT42
€79C A7 00 STA A 0,X
E79E 34 M3 LEA A BRANCH
E701 91 FF CHP A WOFF
€743 27 08 BEQ NONE
€743 FE MOI3 LDX BRANCH
€708 Bé IS LDA A DRANCH+2
E70D A7 00 STA A 0,X

€743 7€ E4OF

E730 FE DO2E

NONE JMP BNRETH
.

CHECK BRANCH ABDRESS

RESTORE IT

STORE STACK PTR ANR PRINT REGISTERS

SHANDLE EFFECTIVE ADDRESS OF BRANCH

YESBR LDX USERPC

E7B3 Eé O LBA D 1 ,X . GET OFFSET
€733 27 04 BEQ® ZEROQOF
77 3 19 BAI RINGFF
¢ PLUS OFFSET
E73Y 08 PLUSOF InX ADD OFFSET TO INSTR ADDRESS
€734 36 DEC B
E709 24 FC BNE PLUSOF
€730 o8 . TEROOF INX POINT TO MEXT INSTR
E70E o8 X
E78F FF 3033 SOTADS STX DRANCN SAVE ADDRESS
£7C2 b 00 LBA A O,X SET INSTRUCTION
€7C4 97 D038 STA A DRANCH+2 SAVE IT
E7C7 86 IF LDA A ¥93F
E7C? A7 00 S$TA A 8,X SUBSTITUTE Sul
E7CH At 00 CHP A 0,X CRECK THAT IT UENT IN
£7cy 27)7 SEQ BOUSER 60 10 USER IF OM
E7CF 20 7B BRA NOGOOB IF IT DIDN’T STORE PROPERLY
s NINUS OFFSET
E791 09 NINOFF DEX SUDTRACT OFFSET
£792 3C 1nC 3 FRON INSTR ADDRESS
€703 24 FC MME NINGFF
€703 20 €6 BRA IEROOF

€797 FE DO2E
€704 EE 0}
E70C 20 €t

E70E FE DO2E

.
¢ MANDLE EXTENDED JUMP ABDRESS

JEXT LDX USERPC
X 1,X
DRA GOTADD

.

SHANDLE INDEXED JunP

JINDEX LBX USERPC

E7E1 E6 O LA D 1,X
€7€3 FE MO0 LI sp
€764 EE 04 LR 4,x
(743 N 14 DEX

E7€Y 00 DEX

E7EA 3D 181 8

E7E8 27 MO BEQ ZEROOF
E7ED 20 CA BRA PLUSOF

€7EF FE MO0
€7F2 EE 08
E7F4 20 CY

GET EXTENDED JUMP ADDRESS
GO TAKE CARE OF IT

BET OFFSET
GET USER INDEX.REBISTER
POINT TO 2 BYTES UNDER

IF OFFSET I5 ZERG
IF OFFSET IS NONZERO

.
* NANDLE RTS INSTRUCTION

RISIN LDX SP
LI 0,X
A GOTADD

GET USER STACK POINTER
GET RETURN ADDRESS FROM YSER'S STACK
AND TREAT IT AS A JuNnP

Microcomputing, September 1980

191

